

STAB Kickoff August 8, 2000 Boeing Phantom Works

Jonathan Saint Clair P.M. Barbara Capron P.I.

Boeing Integration
Capabilities Enabling
Steered Agile Beam EO Solutions
for the
Theater WarFighter

- STAB Technologies
 - MEMS, SLM, OPA, XOD,

Micro-Optic

Steering angles

±2° to ±45°

- Control Loop Bandwidths
 - 10 Hz to 10 kHz

- **Boeing Experience**
 - Laser Range/Designation
 - IRCM
 - LOS Stabilization
 - MEMS

Optical Phased Arrays (OPA)

Adaptive Optics

Optical Communications

Boeing STAB Team Organization

Boeing

Team Leader System Integration

Rockwell Science Ctr. Micro-optic Lenslet Array

EOSPACE Inc

Switched Waveguide Array

FSI

Atmospheric Propagation Studies

Schedule for Boeing-Team STAB Program

	Year 1	Year 2		Year	3
Boeing Team	Sys Req, Des, Mod Baseline				
	Req & Des Comp	Option Des	•	/pe Demo	Demo Δ

DARPA - Steered Agile Beam Program - STAB Candidate Approaches

BOEING*

Solid State Agile Beam Steering

- Develop prototype solid state beam steering device for hand held multipoint laser communications package with high speed tracking, multiple beam pointing and tracking.
- Boeing (prime), RSC EOSPACE, FSI
- \$3M(\$1M base, \$2M option), 3 Years

b) Switched Emitter Array

Rockwell Science Center's Micro-optic (M-O) Beam Steering Module

- Relative motion of the M-O arrays in X and Y steers beam in 2-D
- Large angle steering requires fast (low F#) micro-lenses
- M-O lens arrays with F# 0.5 have been demonstrated at RSC

RSC MOEM (Micro-Opto-ElectroMechanical) Beam Steering

- Based on optical MEMS technology
 - Lightweight, low power, compact
 - Low cost
- •Surface flatness of MEM scanner a crucial RSC development
- Numerous dual use applications (barcode scanners, low resolution HMD, perimeter sensors, etc.)
- Demonstrated concept at RSC

Boeing brings experience to bear in optical phase control Optical Control of RF Phase - System Overview

Darpa Steered Agile Beam Program Armored Platforms

Avenger Missile System

Darpa Steered Agile Beam Program Missile Platforms

PAC-3

JDAM

GBU-15

SLAM-ER

SLID

Brimstone

Harpoon

Boeing understands the value of reducing size and weight of optical subsystems

(DIRCM) is a self-protection suite that includes a missile warning sensor that detects missile launches, and assesses the threat; a turret with the Fine Track Sensor for tracking, and high-intensity infrared flash lamps for defeat of the threat missile's seeker, with control HW and S/W. The DIRCM suite is designed for future upgrade to a laser-based defeat mechanism that will be effective against future threats.

MMS uses a combination of a highresolution television camera, thermal
imaging sensors and a laser
rangefinder/designator to accomplish
its mission. The imaging sensor
package provides detection and
recognition at night and in inclement
weather, while the laser
rangefinder/designator achieves
precise target designation for laserguided weapons.

Boeing STAB open Kickoff 8/9/00